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We have developed a neurophysiologic-based assessment of student’s understanding of complex problem 
spaces that blends the population-based advantages of probabilistic performance modeling with the 
detection of neurophysiologic signals. It is designed to be rapid and effective in complex environments 
where assessment is often imprecise. Cohorts of novices, and experts encoded chemistry problem spaces by 
performing a series of online problem solving simulations. The stable memory encoding was verified by 
comparing their strategies with established probabilistic models of strategic performance. Then, we probed 
the neural correlates of the encoded problem space by measuring differential EEG signatures that were 
recorded in response to rapidly presented sequences of chemical reactions that represented different valid 
or invalid approaches for solving the chemistry problems. We found that experts completed performances 
in stacks more rapidly than did novices and they also correctly identified a higher percentage of reactions. 
Event related potentials revealed showed increased positivities in the 100-400 ms following presentation of 
the image preceding the decision when compared with the other stack images. This neural activity was used 
to explore reasons why students missed performances in the stack. One situation occurred when students 
appeared to have a lapse of attention. This was characterized by increased power in the 12-15 Hz range, a 
decrease in the ERP positivities at 100-400 ms after the final image presentation, and a slower reaction 
time. A second situation occurred when the students’ decisions were almost entirely the reverse of what 
were expected. These responses were characterized by ERP morphologies similar to those of correct 
decisions suggesting the student had mistaken one set of chemical reactions for another. 

INTRODUCTION  

Encoding and consolidating problem spaces into memory 
require time and effort (Stevens et al, 2004, Soller & Stevens, 
2007). A challenge facing researchers conducting 
neurophysiologic studies of subjects’ encoding of problem 
spaces in self-paced environments is that there is considerable 
time between behaviorally relevant events (Gevins et al, 1997, 
Stevens et al, 2007). While navigating these problem spaces 
online there will be multiple mouse clicks, menu choices and 
even page changes as the problem solving event evolves. Such 
environments have a low neurophysiologic signal to noise 
ratio, complicating the deciphering of when information 
relevant to strategic problem solving is stably encoded into 
memory. 

While associative learning and problem space encoding 
takes time, data retrieval during subsequent problem solving 
can be rapid. Broadly speaking, memory performance is a 
function of the degree to which cognitive operations engaged 
at encoding are recapitulated at retrieval (Tulving & Thomson, 
1973, Nyberg et al, 2000), and there are anatomic (Reijmers et 
al (2007) and neurophysiologic (Rugg et al, 2000; Bastiaansen 
et al,, 2003) reasons to believe that retrieval of a student’s 
representation of the problem space may activate similar 
pathways to those used to encode it. We believe that by 
studying the details of memory retrieval, valuable assessment 
information regarding the encoding process can be derived 
and used to create a closed loop feedback system for 

improving problem solving performance. In this manuscript 
we present initial efforts at developing such an assessment. 

The assessment is being developed “on top of” 
IMMEXTM, a library of online multimedia simulations for 
scientific problem solving that has a large user base (over 
700,000 performances) and a refined set of probabilistic 
modeling tools for monitoring student’s performance and 
progress (Cayetano et al, 2001, Stevens et al, 2004, Stevens & 
Soller, 2005, Soller & Stevens, 2007). The IMMEXTM 
(Integrated Multimedia Exercises) system presents case-study-
type problems which students solve by searching multiple data 
and information sources. One sample task that we are using to 
develop the assessment is called Hazmat, which provides 
evidence of a student's ability to conduct qualitative chemical 
analyses (refs).  

IMMEXTM and other simulation driven tasks continually 
involve decisions revolving around costs of obtaining 
information and deciding what specific items of information 
are needed next. These decisions drive a process of perceptual 
and diagnostic evaluation of stimuli and the integration of 
them into a running stream of potential outcomes. The most 
important decision during IMMEXTM problem solving, 
however, is the solution to the problem. Generally the decision 
is precipitated by a final piece of information that reduces the 
uncertainty to a decision threshold level.  

This decision can be described in terms of (at least) two 
different contexts, the stimulus-locked processes linked to the 
ultimate piece of acquired information that reduces the 
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uncertainty to a threshold level, and those locked to the 
decision itself (decision-locked).  

Some decision-locked events will appear slightly before 
(several hundreds of milliseconds) the decision event such as 
the preparation for motor activity originating in the 
supplementary motor area. More distally, there appear to be 
cascades of decision events in the prefrontal and parietal 
cortex, which in the case of freely made intentions can precede 
decision awareness by up to 10s (Soon et al, 2008).  

For stimuli, which in the case of IMMEXTM would be the 
display of a piece of information, the viewing of an image for 
as little as 27 ms. allows the detection and description of 
shades and shapes. By 100 ms an object can be recognized, 
and separation of objects and words can occur between 200 – 
400 ms. Words then become recognized (around 500-600 ms), 
and later still (~750 ms) non-words are recognized.  

This ability of the visual system to rapidly identify and 
classify objects has found practical applications for target 
recognition where subjects are shown rapid images which may 
or may not contain specific targets to be identified (Mathan, et 
al 2006). Power Event Related Potentials (PERP) and Event 
Related Potentials (ERP) collected from EEG sensors, 
particularly within the 3-7 Hz frequency range, can reliably 
determine whether or not the trainee recognized a target within 
an image (McKeeff & Tong, 2007).  

Based on the above studies we believe that the rapid 
display of sequences of images that are linked by a problem 
solving context can leverage the speed of the human visual 
processing system to greatly accelerate our ability to assess 
student’s representation of problem spaces.  

METHODS 

In our experiments, the subjects first encoded the Hazmat 
problem spaces by performing a series of IMMEXTM online 
chemistry problem solving simulations, often as part of normal 
classroom work. The stable memory encoding was verified by 
comparing their strategies with established probabilistic 
models of strategic performance (Stevens et al, 2004, Soller & 
Stevens, 2007). For memory retrieval, students were shown 
stacks in Rapid Sequence Visual Presentation (RSVP) mode 
(Gerson et al, 2005) of images from the Hazmat problem 
space which represented sequences of chemical reactions.  

The student’s task was to decide if the sequences 
represented the reactions for a particular compound. Each 
image presented was a screen shot from the Hazmat chemistry 
problem set centered in the display along with the text 
describing the test. A combination of images results in a 
sequence called a performance (containing 7-15 images), and 
the series of performances are arranged into stacks (containing 
18-25 performances). In preliminary studies the image 
presentation rate was set to 600 ms, and subjects could vary 
the speeds from 300-3000ms. A 2 second blank screen 
separated each of the performances in the problem set and if 
the student did not make a decision by then, the performance 
repeats. The performances were all drawn from the IMMEXTM 
database which contains over 75,000 Hazmat performances.  

Figure 1 Experimental task for memory retrieval. 

During the protocol, students login to the IMMEXTM 
server on the Internet and a Flash application is downloaded to 
the client machine along with the image stacks. When ready 
the stack sequences are presented. At the conclusion of the 
stacks (each containing 18-25 performance sequences), 
millisecond-level time stamped logs of each image 
presentations and student decisions were transferred to the 
IMMEXTM database server via Web Service technologies. This 
was used to merge the stack decision data with the Advanced 
Brain Monitoring (ABM) EEG files for neural signature 
analysis, and to relate student performance on the RSVP 
stacks with the performances and strategic approaches 
students used during the problem solving encoding phase. 

Neural signatures of target detection, decision-making, 
saliency and accuracy of signal processing were obtained 
through the application of time-locked EEG potentials. Power 
spectral analysis and wavelet transformations were used to 
compute mean power spectra time-locked to a specific 
stimulus presentation or to a specific user response in the test 
bed environment. The EEG analysis window (between 250 



and 5000msec.) was positioned to align with either a specific 
stimulus presentation event or over a response event to 
calculate the ERP associated with processing of the stimulus 
or with generation of the response. ABM software 
automatically labeled those single trial ERPs that were 
associated with significant artifacts including eye blinks, 
EMG, spikes, saturation or other contaminants and provides 
the option for including or excluding all trials with artifacts.  

In addition to examining the single-trial and/or averaged 
ERPS as detected in the raw EEG signal, it is often useful to 
obtain the event-specific signatures using mean power spectra 
time-locked to the stimulus, response or other events of 
interest (termed “PERPs”, Power Event-Related Potentials). 
To calculate the PERPs, the EEG is segmented into windows 
of at least 1000msec. The EEG analysis window is then 
positioned over either a specific stimulus presentation event or 
over a response event to calculate the EEG power associated 
with processing of a stimulus or with generation of a response. 
The EEG signal is also decomposed using a wavelets 
transformation, allowing the wavelets coefficients to also be 
used to characterize event-related EEG features. 

RESULTS 

Pilot Validation Studies 

 
Figure 2. Correlation of Hazmat problem solving ability (item 
response theory estimates) and IRS performance. 

An initial study sought to relate the IRS performance 
results to student’s prior in-classroom problem solving 
performances The correlation between students’ performance 
of the IRS tasks and their overall Hazmat problem solving 
ability was (r2 = 0.49). This helped validate the IRS task as a 
reasonable approximation of the task used for problem space 
encoding. Further validation studies were conducted with five 
experienced / expert chemists (faculty – postdoctoral 
chemistry students) to establish the display speed of the 
images, and assess the ability of these chemists to distinguish 
valid sequences of chemical reactions from sequences of 
random images from Hazmat (i.e. invalid reactions). Each 
expert performed 3-5 stacks for a total of ~250 decision 
events. 95.3% of the decisions were confirmations or correct 
rejections. Most experts found the 600 ms image presentation 
speed too rapid and self-adjusted to a rate of 1200-1400 ms. 
As shown in Figure 3, with stack experience, the speed of 
distinguishing valid from invalid chemical sequences 

increased suggesting a training effect and valid performances 
were consistently identified slower than invalid performances. 
Subsequent studies with novices were conducted with the 
image presentation speed set at 1300 ms. 

Studies comparing experts (n = 5) and novices (n = 75) 
showed that experts correctly identified more performances 
than novices (95% vs. 48%, p< 0.01), and completed 
performances more rapidly (19.8 sec. vs. 24.2 sec, p< 0.05). 

 
Figure 3 Stack Performance Metrics for Expert #700. 

For most experts, the image in the stack immediately 
preceding the decision provided strong evidence for either 
confirming or refuting the evidence for the performance. From 
this a mean reaction time was constructed with an average 
of.92 ± .35 seconds (n = 14) for correct valid performances, 
0.98 ± .43 (n = 32) for correct invalid performances and 1.05 ± 
.56 seconds (n = 8) for misses and/or false positives. These 
data suggest that close-range decision events can be studied by 
stimulus-locking to the presentation of the last image before 
the decision. 

Identification of Neural Signatures at Decision Boundaries 

We began by conducting an ERP analysis that was 
stimulus-locked to the last image. We call these ‘threshold’ 
images as it is at this point the uncertainty with the decision is 
reduced to the point where an overt decision is initiated. We 
then subtracted the contribution of all of the non decision 
images to obtain the difference. This resulted in increased 
positivity at 100 – 400 ms following the image display. There 
was also a large positive component around 700 ms after 
threshold image presentation (Figure 4). 

The stimulus-locked ERPs were developed by locking the 
EEG signal to the epoch and data point of the last image 
before the decision. ERPs were then calculated (in micro 
volts) every 4 ms, for a total of 256 Hz sampling rate, for the 1 
second following the presentation of the threshold image. The 
average ERP was also calculated for all the remaining images 
and this was subtracted from the values of the final image. The 
values are the averages from three student subjects who 
performed two stacks of 25 performances (150 decisions 
total).  



Figure 4. ERP for threshold images and all images in the 
stack.  

Why Do Students Miss Problems? 

We next examined the FzPO EEG activity for 1300 
seconds following the threshold image, and separated these 
performances into the correct and incorrect responses. For this 
analysis we chose two students highlighted in Figure 3, both 
of whom solved the majority of the Hazmat problems (i.e. 
good encoding of the problem space), but showed large 
differences in their performance on IRS. Figure 5A shows the 
activity of the threshold images preceding a correct response 
overlaid onto the total image activity for subject 32192.  

Figure 5. A and B. ERP C. PERP spectra for student 322192. 

As expected, the correct responses (n =43) were preceded 
by significantly (p< 0.01) greater activity in data pts 44-57 and 
72-83 (Figure 5A). In the incorrect responses (Figure 5B), (n =
7), this activity was replaced by a more regular 13-15 Hz
rhythm. A power spectrum analysis of the correct and
incorrect responses indicated increased activity in the 12-15
Hz range and a decreased activity in the 3-4 Hz range
compared with correct responses. In addition, the reaction
time was significantly longer for missed performances (2.3 ±
1.1 vs. 1.2 ± .99 sec. p< 0.05). Combined, these results suggest
that the incorrect responses by this student may have resulted
from momentary lapses in attention as described by Weissman
et al (2006) and Eichel et al (2008).

The second student (#32166) consistently responded ‘No’ 
to all the performances that should have been ‘Yes’ and vice 
versa, apparently distinguishing the reactions correctly but 
confusing their meaning. As shown in Figure 6, the ERP 
activity of the threshold images in 31-93 was significantly 
more positive than that of all remaining images, suggesting 
that as she was choosing incorrectly, she believed she was 
making the correct decisions.  

Figure 6. ERP for student 32166. 

CONCLUSIONS 

This study has presented an approach for studying how 
well students have encoded qualitative chemistry problem 
spaces and for exploring why students make incorrect 
decisions. The neural signatures detected helped identify at 
least two examples of reduced performance situations that 
may not have otherwise been observed. These situations, 



possible lapses of attention and correct use of incorrect content 
knowledge are likely to be common in novices.  

The approach we have taken helps concentrate the 
number of student recognition and decision events that can be 
studied in a short period of time like a classroom environment, 
and helps improve the decision-related signal to noise ratio for 
a complex problem solving task . The correlation between the 
IRS performances and the Hazmat problem solving 
performances used for encoding suggests that the RSVP stacks 
may be a useful rapid approach for studying how well the 
problem space has been encoded, and for detecting possible 
neural signatures of the events leading up to a decision.  

In this study we chose to lock the EEG to the last stimulus 
image before the decision event, rather than to the decision 
itself. This seemed justified as a) experts reject or confirm a 
performance around such key event images, b) the reaction 
time from these images to the decision is 1000 – 1200ms 
which is within the 1300ms display time for an image, and c) 
doing so allows the removal of most image-locked EEG 
activities that are not necessarily tied to the decision itself. 
Further studies are in progress to lock backward from decision 
itself which should give a different perspective of the events 
prior to the decision such as the preparation of motor activity 
for a key press.  

We have shown that the major EEG difference between 
the threshold images and the other images was an increased 
positivity in the 100-400ms following the image display. This 
is when P2, N2 and P3 ERP components are observed 
following stimuli (Eichel et al, 2008). The relatively low 
resolution of the 6 channel bipolar headsets being used 
restricts our ability to resolve this activity further. 
Nevertheless, the activity over this time frame suggests the 
involvement of a matching process between the sensory input 
of the last image and the neuronal representation of stimuli in 
the context of the task. By monitoring this activity in a closed 
loop manner after the presentation of each image, we may be 
able to detect the onset of a decision, and intervene when the 
decision may be inappropriate.  
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