
Objective: We investigated cross-level effects, which are 
concurrent changes across neural and cognitive-behavioral levels 
of analysis as teams interact, between neurophysiology and 
team communication variables under variations in team training.

Background: When people work together as a team, 
they develop neural, cognitive, and behavioral patterns that 
they would not develop individually. It is currently unknown 
whether these patterns are associated with each other in the 
form of cross-level effects.

Method: Team-level neurophysiology and latent seman-
tic analysis communication data were collected from subma-
rine teams in a training simulation. We analyzed whether (a) 
both neural and communication variables change together in 
response to changes in training segments (briefing, scenario, 
or debriefing), (b) neural and communication variables mutu-
ally discriminate teams of different experience levels, and (c) 
peak cross-correlations between neural and communication 
variables identify how the levels are linked.

Results: Changes in training segment led to changes in 
both neural and communication variables, neural and com-
munication variables mutually discriminated between teams 
of different experience levels, and peak cross-correlations 
indicated that changes in communication precede changes in 
neural patterns in more experienced teams.

Conclusion: Cross-level effects suggest that teamwork 
is not reducible to a fundamental level of analysis and that 
training effects are spread out across neural and cognitive-
behavioral levels of analysis. Cross-level effects are important 
to consider for theories of team performance and practical 
aspects of team training.

Application: Cross-level effects suggest that measure-
ments could be taken at one level (e.g., neural) to assess team 
experience (or skill) on another level (e.g., cognitive-behavioral).

Keywords: communication, coordination, cross-correlation, 
latent semantic analysis, neurophysiology, teams

Introduction
There is general agreement that individual 

neural, cognitive, and behavioral processes 
change and develop as people interact with 
the world around them, but are some of these 
changes correlated across individuals when they 
work together as a team? In prior research, we 
have found that when people work together as 
a team, neurophysiological (Stevens, Gorman, 
Amazeen, Likens, & Galloway, 2012; Lik-
ens, Amazeen, Stevens, Galloway, & Gorman, 
2014), perceptual-motor (Gorman & Crites, 
2013, 2015), and cognitive-behavioral (e.g., 
communication; Gorman & Cooke, 2011) pat-
terns emerge between team members that would 
not otherwise develop individually. However, 
it is unknown how these different patterns are 
linked across levels of analysis (e.g., neural and 
cognitive-behavioral levels) as teams interact.

With this in mind, we investigate cross-level 
effects, which are concurrent changes across 
neural and cognitive-behavioral levels of analy-
sis as teams interact. Specifically, we investigate 
whether cross-level effects exist between brain-
waves measured through electroencephalography 
(EEG) and team communication under varia-
tions in team training and amount of team expe-
rience. In this paper, we attempt to address theo-
retical and practical implications of cross-level 
effects. If cross-level effects exist, then new 
forms of team skill assessment may be revealed, 
and the relative contributions of neural and  
cognitive-behavioral processes to team develop-
ment may be clarified.

Theoretical Underpinnings of Cross-
Level Effects

Most theories that are relevant to understanding 
team performance either implicitly or explicitly 
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suggest a hierarchical arrangement of neural and 
cognitive-behavioral levels. Some suggest that 
team performance is fundamentally caused by 
inner mental processes and structures in the indi-
vidual that are subsequently coordinated through 
communication (either overtly or implicitly). 
For example, joint action (Sebanz, Bekkering, 
& Knoblich, 2006), shared cognition (Cannon-
Bowers & Salas, 2001), and social neuroscience 
(Frith & Wolpert, 2004) posit fundamental neural 
processes and knowledge structures as the basis 
for interpersonal coordination and team perfor-
mance. On the other hand, others suggest that 
emergent team-level constraints, such as commu-
nication patterns, better explain team coordina-
tion and performance variance, where changes in 
inner mental processes and knowledge structures 
are meaningful only in light of interpersonal 
interactions (e.g., interactive team cognition; 
Cooke, Gorman, Myers, & Duran, 2013; team 
coordination dynamics; Gorman, 2014). These 
different theoretical perspectives link neural and 
cognitive-behavioral levels but introduce the 
question of which should come first, the neural 
or cognitive-behavioral level, in explaining team 
performance and skill development.

To fully address this question is beyond the 
scope of this paper, but we will explore it by 
examining how lead-lag cross-correlations 
between neurophysiological and communica-
tion variables develop by comparing cross-level 
effects in more versus less experienced (skilled) 
teams. Although we think that it is obvious that 
one cannot have team communication patterns 
without neural patterns (or vice versa), by exam-
ining lead-lag cross-correlations between these 
two levels of analysis, we will test which tends 
to come first, the neural or communication level, 
in the establishing of cross-level effects.

Practical Implications of Cross-Level 
Effects

From a practical standpoint, evidence for 
cross-level effects could suggest new ways to 
measure team skill development. For example, 
when a team shows improvement on one level of 
analysis (e.g., communicating effectively), then 
it would be changing on the other, less well-
understood level of analysis (e.g., team neural 
pattern). Insofar as neural and communication  

variables exhibit cross-level effects, then one 
level could be used to better understand the 
development of effective teamwork along the 
other. For example, communication indicators 
of effectiveness that can be observed by instruc-
tors could be transformed into neural metrics that 
could be automatically monitored by machines.

Measuring Cross-Level Effects
To measure cross-level effects, we chose 

neural and communication variables based on 
their previous success in capturing performance 
variability and skill level during team training. 
The team neural variable is measured using an 
EEG-based neurodynamic approach (Stevens, 
Galloway, Wang, & Berka, 2012), and com-
munication variables are measured using latent 
semantic analysis (LSA; Landauer & Dumais, 
1997) team communication metrics (Gorman, 
Foltz, Kiekel, Martin, & Cooke, 2003).

Team neurophysiology: The neurodynamic 
approach. Neurophysiological processes reflect 
variability in mental state that can be measured 
using EEG. Specifically, EEG produces oscilla-
tory brainwave signals related to brain function-
ing that can be mapped onto mental state 
variables, such as neurophysiological engage-
ment. Engagement is essentially a measure of 
attention (Berka et al., 2007), and the neurody-
namic approach introduces a new, team-level 
variable that captures the distribution of engage-
ment states across team members. For example, 
whether all team members have high engage-
ment, some have high and some low engage-
ment, or all have low engagement are all 
different team neurophysiological distributions 
that map onto qualitatively different team men-
tal states in the team neurodynamic approach.

In this approach, qualitative change of the 
team neurophysiological distribution is mea-
sured over time and is then transformed into a 
neurodynamic entropy time series (this proce-
dure is described in detail later). Neurodynamic 
entropy is a continuously varying index of how 
much the team neurophysiological distribution 
is changing. Low entropy means that the team 
neurophysiological distribution is changing 
less, and high entropy means that it is changing 
more; low entropy can be interpreted as a rela-
tively fixed team mental state, and high entropy 
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can be interpreted as a more flexible team  
mental state.

It is critical to note that low entropy does not 
mean that all team members simultaneously 
share a high joint focus of engagement (atten-
tion) but means simply that the distribution of 
engagement across team members, whatever 
that distribution looks like, is relatively fixed 
over time. Conversely, high entropy is thought 
to be associated with team flexibility and the 
ability to adapt to dynamic changes in the task 
environment or team structure because the team 
neurophysiological distribution is highly respon-
sive to changes in the team or task environment 
(Stevens et al., 2012).

Through the lens of interactive team cogni-
tion and team coordination dynamics (Cooke  
et al., 2013; Gorman, 2014), we would expect 
teams to change not only their communication 
patterns but also their neural patterns to match 
changes in task dynamics. For example, in a 
relatively predictable and stable team task, we 
would expect the team neurophysiological  
distribution to be relatively fixed and stable  
(low entropy); whereas in a highly dynamic, 
unpredictable team task, we would expect the 
team neurophysiological distribution to be more 
variable and flexible (high entropy) if the team 
is responding appropriately to those different 
task dynamics. Our study of cross-level effects 
is motivated by our initial observations that 
experienced submarine piloting and navigation 
(SPAN) teams become more neurally flexible 
during more dynamic training segments and 
more neurally fixed during more predictable and 
stable training segments in accordance with task 
demands (Stevens et al., 2012) and, moreover, 
that those neural changes appear to be correlated 
with changes in communication content patterns 
between those training segments.

For example, during the scenario training 
segment in Figure 1, entropy fluctuates around a 
relatively high value throughout the segment as 
team members communicate new and evolving 
information (a highly dynamic task). In contrast, 
during debriefing, entropy precipitously drops 
to a low value, indicating a more fixed team neu-
rophysiological distribution, as team members 
communicate to reach consensus about informa-
tion they previously encountered during the  

scenario (a comparatively predictable and stable 
task). On the basis of the communication that 
goes on during training segments such as these, 
we predicted that changes in entropy should cor-
respond to changes in communication pattern in 
response to the different task dynamics encoun-
tered in SPAN training segments.

Communication content analysis: The LSA 
approach. Whereas neurodynamic entropy pro-
vides a gauge on neurophysiological change 
across team members, communication content 
analysis provides a gauge on the interactive 
expression of domain-relevant knowledge as 
team members interact (Cooke & Gorman, 
2009). We analyzed communication content 
using LSA (Landauer, Foltz, & Laham, 1998). 
LSA is a mathematical/statistical method for 
representing and analyzing semantic knowledge 
in a particular work domain and is based on the 
theory that knowledge is reflected in how words 
group into contexts within meaningful discourse 
(Landauer & Dumais, 1997).

LSA has many applications for knowledge 
assessment, from education and testing (Islam & 
Latiful Hoque, 2010) to communication analysis 
in real-time work domains (Dong, 2005). LSA 
has been primarily used in team performance 
domains to study the relationship between com-
munication content and team skill level (Foltz & 
Martin, 2009; Gorman et al., 2003). This objec-
tive is accomplished by plotting transcribed 
communications (e.g., utterances) in a “seman-
tic space,” where the semantic space is a factor-
analytic model of the domain of discourse. As 
we describe later, plotting utterances in the 
semantic space provides quantitative measures 
of the amount of domain-specific content  

DebriefingScenario

Neurodynamic
Entropy

Training Segment

Time

Figure 1. Neurodynamic entropy pattern as a function 
of scenario and debriefing training segments from prior 
submarine piloting and navigation (SPAN) research 
(Stevens, Gorman, Amazeen, Likens, & Galloway, 
2012).
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contained in utterances (semantic content) and 
how correlated those utterances are with each 
other (semantic similarity).

We have previously used semantic similarity to 
discriminate between more and less skilled teams 
using a military unmanned air vehicle (UAV) 
semantic space (Cooke & Shope, 2005; Martin & 
Foltz, 2004), where the communications of more 
skilled teams were more similar to each other than 
to less skilled teams. In this way, LSA can be used 
to link communication content to team skill level, 
which is relevant to distinguishing between more 
versus less experienced SPAN teams in the current 
study. Also, we have previously used semantic 
content of utterances to distinguish between dif-
ferent UAV task dynamics (e.g., low workload 
versus high workload; Cooke, Gorman, Kiekel, 
Foltz, & Martin, 2005), which is relevant to distin-
guishing between different SPAN training seg-
ments (e.g., scenario vs. debriefing; Figure 1). 
These prior results are important because they 
demonstrate that LSA communication metrics 
(semantic similarity, semantic content) capture the 
cognitive-behavioral variability required to iden-
tify cross-level effects across changes in training 
segments and differences in team experience level 
in SPAN teams.

Research Questions for Testing Cross-
Level Effects

Do both neural and communication vari-
ables change in response to changes in training 
segments? We hypothesized that if cross-level 
effects are present, then they should be reflected 
in concomitant changes across both neural and 
communication variables in response to varia-
tions in training segments, such as those in Fig-
ure 1. We refer to concomitant changes across 
neural and communication variables as concom-
itancy. Alternatively, if cross-level effects are 
not present, then changes in one level should not 
correspond to changes in the other level as train-
ing segments vary. To test for concomitancy, we 
calculated LSA communication metrics and 
neurodynamic entropy from SPAN teams to 
determine whether both variables change 
together as training segments (briefing, scenario, 
debriefing) vary.

Do neural and communication variables 
mutually discriminate between teams of different 

experience (skill) levels? We have previously 
found that when teams are of different skill lev-
els, it is reflected in differences in the semantic 
similarity of their communication (Foltz & Mar-
tin, 2009; Gorman et al., 2003). Similar to the 
idea of the development of “common ground” in 
communication (Clark & Brennan, 1991), it is 
thought that the communication of more skilled 
teams is more similar compared to less skilled 
teams because they have interacted longer in a 
particular task domain. In this study, we extend 
that logic to more versus less experienced SPAN 
teams. We predicted that more experienced 
SPAN teams could be discriminated from less 
experienced SPAN teams based on the similarity 
of their communications. In accordance with our 
general aim of identifying cross-level effects, we 
carried out a parallel neurodynamic analysis to 
determine whether entropy similarly discrimi-
nates between more and less experienced SPAN 
teams. If both neural and communication vari-
ables discriminate between teams of different 
experience levels, then we refer to it as mutual 
discrimination and take it as an indicator that 
cross-level effects correspond to differences in 
team skill development across both neural and 
cognitive-behavioral levels of analysis. In that 
case, either or both variables could be used to 
discriminate between teams with different expe-
rience (skill) levels.

Assuming cross-level effects occur, how  
are levels linked? Communication and neural 
processes can span different timescales, from 
long conversations in the former case to fleeting 
synaptic processes in the latter. Hence, these 
levels might become linked in temporally com-
plex ways as teams develop. Therefore, we used 
lead-lag cross-correlations (Box, Jenkins, & 
Reinsel, 1994) to identify linkages between 
neurodynamic entropy and semantic content 
across multiple temporal alignments of these 
two variables.

Cross-correlation functions measure the direc-
tion of correlation between two variables as a 
function of the temporal offset (“lag”) between 
them. By examining the direction of the “peak” 
(maximum) cross-correlation (i.e., positive or 
negative correlation), we expect to learn how 
team neurodynamics and communication are 
related. For example, if neural flexibility (high 
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entropy) is associated with terse domain-specific 
communication (low semantic content), then 
the correlation will be negative; if neural flexi-
bility (high entropy) is associated with length-
ier, more open-ended domain-specific commu-
nication (high semantic content), then the cor-
relation will be positive. By lining up the 
variables in different temporal alignments (e.g., 
we could line up current communication values 
at time t with future neural values at time t + 1 
[Lag 1] and compute the correlation, which 
would be one possible temporal alignment) and 
finding the lag where the peak cross-correlation 
occurs, we expect to learn whether the neural or 
communication process tends to lead as cross-
level effects develop.

In this light, differences in the lead-lag nature 
of peak cross-correlations across more and less 
experienced teams may provide insight into the 
theoretical question of which tends to come first, 
the neural or communication level, as teams 
develop. The view that team performance is fun-
damentally caused by mental and neural activity 
in the individual that is subsequently expressed 
as cognitive-behavioral (e.g., communication) 
variability across team members suggests that 
neural should be leading and communication 
lagging in these peak cross-correlations. Alter-
natively, the view that cognitive-behavioral con-
straints, such as emergent communication pat-
terns, constrain neural and mental changes in the 
individual suggests that communication should 
be leading and neural lagging in these peak 
cross-correlations.

The Current Study
In addressing these research questions, we 

tested three predictions in the context of SPAN 
that should be met with positive results if 
cross-level effects are present: (a) concomitancy 
of training segment effects on neurodynamic 
entropy and communication metrics, (b) that 
semantic relatedness and neurodynamic entropy 
mutually discriminate between teams of different 
experience levels, and (c) that the development 
of cross-level effects can be observed through 
changes in lead-lag peak cross-correlations 
between neurodynamic entropy and communi-
cation across more and less experienced teams.

Method
Participants

Neurophysiology and communication data 
were obtained from junior officer naviga-
tion teams enrolled in the Submarine Officer 
Advanced Candidacy class at the U.S. Navy 
Submarine School in Groton, Connecticut. 
These SPAN teams consisted of six crew mem-
bers: quartermaster on watch, navigator, officer 
on deck, assistant navigator, contact coordina-
tor, and radar. (Other people were “satellite” 
team members but were not directly involved in 
the team processes analyzed here.) We analyzed 
seven SPAN training sessions, four from more 
experienced teams (teams that had recently 
returned to port) and three from less experi-
enced teams (candidates training to become 
ship’s drivers and navigators). It is important 
to note that more experienced teams were more 
experienced both with SPAN in general and 
with working together as a team. Those two fac-
tors are not teased apart in the current study, and 
either could play a role in the cross-level effects 
described later. We use a between-subjects 
variable, experience, to index more versus less 
experienced SPAN teams in the analyses.

SPAN Training
SPAN training focused on instruction and 

assessment of four levels of team resilience 
and five team practices (Stevens, Galloway, 
& Lamb, 2014). The four team resilience  
levels included unstressed battle rhythm,  
leader-dependent battle rhythm, team-based 
resilience, and advanced team resilience. The 
five team practices included quality of dia-
logue, decision making, critical thinking, bench 
strength, and problem-solving capacity. Defini-
tions and examples of each of these aspects of 
SPAN training were contained in a submarine 
team behaviors instructor manual, and instruc-
tion and assessments were performed by a high-
ranking submarine commander.

For each team, SPAN training consisted of per-
forming three training segments: briefing, sce-
nario, and debriefing. Overall goals of the scenario, 
team member responsibilities, and task coordina-
tion were planned out during briefing. Scenario 
required teams to steer and change course or speed 
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while identifying landmarks and other ships that 
factor into SPAN; scenario was the most dynamic 
training segment, wherein team members coordi-
nated novel and evolving information to navigate a 
submarine through a high-fidelity simulation envi-
ronment. Debriefing was essentially an after-action 
review, during which the team members discussed 
what worked and different actions that could have 
been taken based on events that unfolded during 
the scenario. We use a within-subjects variable, 
training segment, to index briefing, scenario, or 
debriefing in the analyses.

Measures
Neurodynamic entropy. The team neuro-

physiology measure (neurodynamic entropy) is 
derived from the EEG-based neurophysiological 
symbol (NS) method (Stevens, Galloway, et al., 
2012; Stevens, Gorman, et al., 2012). B-Alert® 
X10 headsets from Advanced Brain Monitoring, 
Inc., were used for EEG data collection. These 
wireless headsets included electrocardiography 
and nine referential EEG channels located at F3, 
F4, C3, C4, P3, P4, Fz, Cz, and POz in a monopo-
lar configuration referenced to linked mastoids. 
Eye blinks and electromyography artifacts were 
decontaminated using proprietary Advanced 
Brain Monitoring, Inc., algorithms (Berka et al., 
2004). Neurocognitive tasks were first used to 
time and record presentation and responses to 
stimuli in order to generate individual models of 
engagement prior to team performance (for vali-
dation of these metrics and task details, see 
Johnson et al., 2011).

The neurocognitive tasks used to build the indi-
vidual models were presented using acquisition 
software proprietary to Advanced Brain Moni-
toring, Inc. This software contains algorithms 
that were trained using EEG data collected  
during the Osler maintenance-of-wakefulness 
task (Krieger, Ayappa, Norman, Rapoport, & 
Walsleben, 2004), eyes-closed passive vigi-
lance, eyes-open passive vigilance, and three-
choice active vigilance tasks to define the 
classes of sleep onset, distraction/relaxed 
wakefulness, and low and high engagement, 
respectively. The purpose of generating indi-
vidual models of engagement using neurocog-
nitive tasks was to ensure that we were able to 
accurately track the engagement of each team 

member before feeding their data into the team 
neurodynamic analysis. Using the NS method, 
the six EEG streams collected individually 
from each team member are processed to gen-
erate a sequence of discrete NS states sampled 
at a fixed time interval (1 Hz).

The EEG-to-NS mapping is such that each 
discrete NS state identifies a different neuro-
physiological distribution of engagement across 
team members (e.g., Figure 2a): As the task 
varies, the team neurophysiological distribu-
tion changes, and those changes are indexed 
over time using discrete NS states. The set of 
NS states for SPAN was determined using an 
artificial neural network approach, which 
resulted in a state space of 25 discrete NS states 
(Figure 2b; Stevens, Galloway, et al., 2012; 
Stevens, Gorman, et al., 2012). Figure 2c lists 
the 25 NS states on the left vertical axis, and a 
bar is plotted whenever each NS state is 
expressed over time (the horizontal axis). In 
this way, Figure 2c shows the time series 
expression of all 25 NS states during a SPAN 
performance.

Although the number of NS states is fixed, 
there is no inherent numerical ordering among 
the states because they are nominal and discrete 
(e.g., NS State 2 is qualitatively different than 
NS State 1, but it is not numerically different or 
larger). Therefore, to quantify change in the 
team neurophysiological distribution, we calcu-
lated entropy (Shannon & Weaver, 1949; Ste-
vens & Galloway, 2014) across the discrete NS 
time series (Equation 1).

NS entropy = − ⋅
=
∑ p pi i
i

log .
1

25

	
(1)

In Equation 1, pi is the relative frequency of 
NS state i, where i indexes each of the 25 pos-
sible NS states, over a 100-s window. Specifi-
cally, entropy is repeatedly calculated as a 
100-s window is slid across the NS time series, 
resulting in a continuous entropy time series 
(Figure 2c; right axis). Using this technique, 
for an input NS time series of length N, the out-
put is a continuous univariate entropy time 
series of length N – 99. In this way, we use the 
first 100 samples to calculate the first entropy 
value at time t = 100, Samples 2 through 101 to 
calculate the next entropy value at t = 101, and 
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so forth. Using a window smaller than 100 s 
has been found to increase the potential for 
artefactual spikes in NS entropy time series 
(Likens et al., 2014; Stevens, Gorman, et al., 
2012).

LSA metrics. In constructing a semantic 
space, LSA takes as input a body of text (e.g., 
training manuals and transcripts) and starts by 

representing the body of text as a matrix of  
frequency co-occurrence of unique words by 
unique paragraphs. The SPAN semantic space 
took as input a body of text containing subma-
rine phraseologies, the International Rules of the 
Road (COLREGS), the Doctrine on Submarine 
Interior communications, and the seven SPAN 
training transcripts (including transcripts in the 

Figure 2. Steps involved in calculating neurodynamic entropy from a six-member submarine 
piloting and navigation crew. (a) This neurophysiological symbol (NS state) represents times 
when Team Members 1 and 3 had below-average electroencephalography engagement and the 
remaining team members (i.e., 2, 4, 5, and 6) had above-average engagement. (b) The 25 NS 
states for these submarine teams (the numbers on the right assigned to the rows are identifiers 
used in the left vertical axis of Panel C; the NS state in Panel A corresponds to NS State 10 
in Panel B). (c) Each row represents the sequential expression of each of the 25 different NS 
states over time and is overlaid with a continuous trace of the neurodynamic entropy calculated 
over the discrete NS states over time. Time is on the horizontal axis, and the fluctuations in 
the entropy of the distribution of symbol expression across the 25 NS states over time can be 
viewed by tracking the entropy signal from left to right: When the team has lower entropy, the 
distribution of NS states is relatively fixed; when the team has higher entropy, the distribution 
is changing.
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corpus is standard practice; e.g., Foltz, Martin, 
Abdelali, Rosenstein, & Oberbreckling, 2006). 
The input dimensions were 6,846 unique words 
by 5,904 unique paragraphs (124,326 total 
words).

For the next step, LSA assumes that low-
dimensional (latent) semantic factors underlie 
the observed co-occurrence frequencies between 
words and paragraphs in the input matrix. These 
latent factors are uncovered using singular value 
decomposition, which is similar to the procedure 
used for principal components factor analysis, 
where larger singular values (cf. eigenvalues) 
correspond to more salient factors. The optimal 
number of factors (dimensions) is chosen such 
that relationships between words and paragraphs 
correspond to correct inductions. The optimal 
number of factors (dimensions) is found by opti-
mizing the semantic space’s performance on 
tests of synonym matching and missing word 
replacement (Foltz et al., 2006; Landauer et al., 
1998). The resulting SPAN semantic space had 
314 dimensions, which is consistent with seman-
tic spaces created in other domains (Landauer  
et al., 1998).

Two metrics derived from the LSA model of 
communication content are (a) the vector length 
of a piece of discourse and (b) the cosine between 
two pieces of discourse. We use these metrics to 
analyze (a) the semantic content contained in an 
utterance and (b) the semantic similarity between 
different pieces of discourse.

The vector length of an utterance (e.g., “Rec-
ommend steering course 178 to regain track.”) 
measures the amount of speech weighted by the 
domain-specific content the discourse contains. 
It is calculated as the Euclidean norm of a vector 
of words (e.g., an utterance) plotted in the 
semantic space.

The cosine between any two pieces of dis-
course (e.g., any two utterances, any two train-
ing segments, any two transcripts) is the vector 
dot product between two word vectors contain-
ing the discourse plotted in the semantic space. 
The correlation between two pieces of discourse 
can be shown to be the cosine of their joining 
angle when their vectors are plotted in the 
semantic space (e.g., independent, perpendicu-
lar vectors have cos[90°] = 0 and are completely 
uncorrelated). In other words, cosine measures 

the degree of semantic similarity, or correlation, 
between any two pieces of discourse.

Results
Concomitancy

Regarding our first research question, we 
predicted that if cross-level effects are present, 
then both neural and communication variables 
should change together as training segment 
(briefing, scenario, debriefing) is varied.

To examine the effects of training segment 
and experience on neurodynamic entropy, we 
computed mean entropy for each team at each 
training segment and analyzed those values 
using a 3 (training segment) × 2 (experience) 
mixed ANOVA. All ANOVA assumptions were 
tested and upheld. Only the training segment 
effect was significant, F(2, 10) = 19.77, p < 
.001, η2 = .80. A Tukey test on training segment  
(αFW = .05) revealed that debriefing entropy 
was significantly lower than either briefing or 
scenario entropy (Figure 3a). This result indi-
cates that the neurophysiological distribution 
across team members was more flexible during 
briefing and scenario but more fixed during 
debriefing.

To determine whether LSA communication 
metrics were similarly affected, we computed 
mean vector length (semantic content) across 
utterances for each team at each training seg-
ment and analyzed those values using a 3 (train-
ing Segment) × 2 (Experience) mixed ANOVA. 
All ANOVA assumptions were tested and upheld. 
As with neurodynamic entropy, only the training 
segment effect was significant, F(2, 10) = 15.78, 
p < .001, η2 = .76. A Tukey test on training seg-
ment (αFW = .05) similarly revealed that vector 
lengths were significantly different during 
debriefing compared to briefing and scenario 
(Figure 3b). This result indicates that communi-
cation content was terser and domain specific 
during briefing and scenario and lengthier and 
domain specific during debriefing.

Together, these results suggest that training 
segments (briefing, scenario) that lead to a more 
flexible team neurophysiological distribution 
(higher entropy) also resulted in terser domain-
specific communication (smaller vector lengths), 
which we take as evidence for concomitancy.
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Mutual Discrimination

In addressing our second research question, 
we predicted that if cross-level effects are pres-
ent, then neural and communication variables 
should mutually discriminate between more and 
less experienced teams.

First, to discriminate between more versus 
less experienced teams using communication, we 
calculated the LSA cosine (semantic similarity) 
between all possible pairs of transcripts as a 
function of training segment and experience. 
We report the cosine matrix (correlation matrix) 
for scenario in Table 1 because it best discrimi-
nated between more and less experienced teams. 
If semantic relatedness discriminates between 
more and less experienced teams, then the bold 
values in Table 1 should be larger than the 
underlined values, as these correspond to 

within- versus between-group correlations. We 
analyzed these groupings using cluster analysis 
and multidimensional scaling (MDS).

Hierarchical clustering of the scenario cosine 
matrix (Table 1) revealed that more and less 
experienced teams clustered based on their com-
munication differences (Figure 4a). The two-
dimensional MDS solution (Stress = .86; R2 = 
.96) similarly revealed that more and less expe-
rienced teams were positioned at opposite ends 
of an “experience” dimension (Figure 4b). The 
second MDS dimension discriminated teams 
along an as-yet-unidentified factor.

Because entropy time series depended on the 
exact amount of time teams performed in each 
training segment, the entropy time series for 
each team were of unequal lengths, which ruled 
out computing a correlation or distance matrix 
between all teams for cluster analysis and MDS. 
Therefore, to test whether neurodynamic entropy 
also discriminated between more and less expe-
rienced teams, we used discriminant function 
analysis to predict experience level (group mem-
bership) using mean entropy at briefing, sce-
nario, debriefing, and overall (i.e., entropy over 
all training segments) as the predictors (i.e., dis-
criminators). To find the ideal set of discrimina-
tors, we conducted a stepwise analysis.

The discriminant function with scenario and 
overall entropy as predictors was optimal, Λ = 
.15, χ2(2) = 7.61, p = .022, ϕ2 = .54, such that  
all teams were correctly discriminated as more 
versus less experienced. The more and less 
experienced team bivariate means (scenario 
entropy, overall entropy) were 4.25, 4.24, and 
4.20, 4.17, respectively, and their group  
centroids were 1.75 and −2.33, respectively. 
Hence, more experienced teams scored higher 
on this “amount-of-entropy” discriminant func-
tion than less experienced teams. This finding 
indicates that more experienced teams were 
more neurodynamically flexible than less expe-
rienced teams during scenario performance and 
overall, and that more and less experienced 
teams were correctly discriminated based on 
that difference in 100% of the cases.

Together, these results indicate that semantic 
similarity and neurodynamic entropy both dis-
criminate between more and less experienced 
teams (mutual discrimination). Furthermore, 
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because mutual discrimination was specific only 
to the scenario segment, it suggests that mutual 
discrimination may be specific to more dynamic, 
real-time aspects of team performance, such as 
scenario performance.

Cross-Correlations
Our third research question was whether 

the development of cross-level effects can be 
observed through differences in lead-lag cross-
correlations between neural and communica-
tion variables across more and less experienced 
teams.

We calculated lagged cross-correlation func-
tions between LSA vector length of each utter-
ance (Variable 1) and mean entropy during each 
utterance (Variable 2) for each transcript using 
the MatLab crosscorr function (Box et al., 1994; 
Figure 5). Which measure was assigned to be 
Variable 1 or Variable 2 was arbitrary; however, 
with the variable assignment that we used, a  
significant peak cross-correlation at a positive 
lag means that communication is leading and 
neurodynamics is lagging, whereas a significant 
peak cross-correlation at a negative lag means 
that neurodynamics is leading and communica-
tion is lagging. We calculated separate cross-
correlation functions for each combination of 
training segment and experience. Number of 
utterances (N) determined the number of lags that 
could be analyzed (N – 1) in each cross-correlation 
function. Because scenario contained the most 
utterances for all teams, there were more lags 

Table 1: Semantic Similarity (Cosine/Correlation) Matrix Computed Between All Pairs of Team 
Transcript During Scenario

More 1 More 2 More 3 More 4 Less 1 Less 2 Less 3

More 1 —  
More 2 .91 —  
More 3 .81 .85 —  
More 4 .85 .87 .82 —  
Less 1 .82 .85 .78 .81 —  
Less 2 .76 .77 .72 .77 .88 —  
Less 3 .81 .81 .79 .84 .85 .83 —

Note. More = more experienced team; Less = less experienced team. Bold values indicate within-group cosines 
(correlations), and underlined values indicate between-group cosines (correlations).

Figure 4. (a) Hierarchical cluster analysis of the latent 
semantic analysis semantic similarity (cosine) matrix 
between teams from the scenario training segment 
and (b) multidimensional scaling of this matrix for the 
scenario training segment. More = more experienced 
team; Less = less experienced team; dashed outlines 
indicate those groupings.
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for analyzing the scenario training segment. 
Peak cross-correlation was identified as the 
largest absolute correlation over all possible 
lags.

A peak cross-correlation that is significantly 
negative at a negative lag would mean that a 
more fixed neurophysiological distribution (low 
entropy) across team members tends to precede 

an increase in the amount of domain-specific 
content of utterances (large vector lengths). 
Conversely, a peak cross-correlation that is sig-
nificantly positive at a positive lag would mean 
that increases in the amount of domain-specific 
content of utterances (large vector lengths) tend 
to precede a more flexible neurophysiological 
distribution (high entropy). A significant peak 

Figure 5. Cross-correlation functions for (a) a less experienced team and (b) a more experienced team 
computed over all training segments. The bold dashed lines represent 95% confidence intervals for 
zero correlation; if the correlation lies outside of those lines, then the correlation is significant at α = 
.05. As described in the text, peak cross-correlations at negative lags indicate that neurodynamics is 
leading, and peak cross-correlations at positive lags indicate that communication is leading.



12	 Month XXXX - Human Factors

cross-correlation at Lag 0 would mean that 
changes in neurophysiology and communication 
do not tend to precede or follow each other in 
time; it means that neurophysiology and com-
munication are correlated only in the present. 
The meanings of other combinations of peak 
cross-correlation direction and lag can be inferred 
from these examples.

Figure 6 shows the direction and significance 
of peak cross-correlations at each level of training 
segment for more and less experienced teams. 
This figure indicates that cross-level effects 
were prevalent across all training segments and 
experience levels. We analyzed the absolute val-
ues (cf. effect size) and lag (i.e., whether neuro-
physiology or communication was leading) of 
these peak cross-correlations separately using 3 
(training segment) × 2 (experience) mixed 
ANOVAs to determine the training segments 
where the strongest cross-level effects occurred 
and whether one level tended to lead the other as 
a function of experience.

Because peak cross-correlations could be either 
positive or negative (Figure 6), we analyzed 
absolute values to identify differences in the 
strength of peak cross-correlation between neural 
and communication variables. Only the training 
segment effect was significant, F(2, 10) = 17.09, 
p = .001, η2 = .77. A Tukey test on training seg-
ment (αFW = .05) revealed that the strongest 
peak cross-correlations occurred during brief-
ing, followed by debriefing, and then scenario 

(Figure 7a). Although peak cross-correlations 
were at their strongest during briefing, peak 
cross-correlations and, hence, cross-level 
effects were found to be significant across all 
training segments (Figure 6).

Peak cross-correlation lag was analyzed to 
determine whether changes in communication 
pattern preceded changes in neurophysiological 
pattern or vice versa. The experience effect, 
F(1, 5) = 6.83, p = .048, η2 = .58, and the Train-
ing Segment × Experience interaction, F(1.05, 
5.25) = 8.42 (Greenhouse-Geisser correction 
used), p = .031, η2 = .63, were both significant. 
The experience effect indicated that the peak 
cross-correlations of more experienced teams 
were positively lagged (communication lead-
ing), whereas the peak cross-correlations of  
less experienced teams were essentially Lag 0 
(neither level leading). However, the interaction 
indicates that the experience effect depended on 
training segment.

As shown in Figure 7b, the experience effect 
was significant only during the scenario train-
ing segment, F(1, 5) = 8.45, p = .033, η2 = .63. 
More experienced teams were significantly 
greater than Lag 0, t(3) = 2.94, p = .03 (one 
tailed), d = 1.47, and less experienced teams did 
not significantly differ from Lag 0, t(2) = −1.29, 
p = .16 (one tailed), d = −0.74, during the  
scenario training segment.

These results indicate that cross-level effects 
become “temporally extended,” with change in 
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communication pattern preceding change in 
neurophysiological pattern, in more experi-
enced teams (see also Figure 5), but that effect 
is apparent only during the dynamic scenario 
training segment. By contrast, the peak cross-
correlation for less experienced teams appears to 
be “temporally local” (i.e., correlated only in the 
present), such that although variations across 
neural and cognitive-behavioral levels are linked, 
neither level tends to lead or lag the other.

Discussion
In this study, we found that concurrent changes 

across neural and communication variables as 
teams interact—cross-level effects—are sub-
ject to variations in team training and amount 

of team experience. In questioning whether 
cross-level effects exist and what drives them, 
we made predictions based on three research 
questions—concomitancy, mutual discrimina-
tion, and cross-correlation—which were each 
met with positive results.

Concomitancy
We hypothesized that if cross-level effects 

are present, then neural and communication 
variables should change together in response 
to changes in the training segments, which we 
termed concomitancy. Neurodynamic entropy 
was significantly lower and semantic content 
of utterances was significantly higher during 
debriefing compared to either the briefing or 
scenario training segment. Compared to sce-
nario, debriefing is a relatively predictable and 
stable training segment that requires more open-
ended discussions of previously encountered 
task elements and consensus-reaching pro-
cesses. In contrast, scenario is more dynamic, 
requiring teams to coordinate new and evolving 
information as the situation unfolds. What these 
results show is that teams concomitantly alter 
their neural dynamics from more variable to 
more fixed and their communication content 
from terser and domain specific to lengthier 
and domain specific as they move from the 
scenario segment to the debriefing segment. We 
think that teams also changed their neural and 
communication patterns to match the dynam-
ics of the briefing segment, but it is unclear at 
this point why those neural and communication 
patterns were not significantly different from 
the more dynamic scenario training segment. 
We suspect that it might be because, unlike 
the debriefing segment, both the briefing and 
scenario segments demanded a stricter division 
of labor and coordination of novel information.

We did not find concomitancy of team expe-
rience effects on neurodynamic entropy and 
semantic content, however. What this result 
suggests is that concomitancy may be a task-
dependent cross-level effect: It is about chang-
ing the team neural and communication dynam-
ics to match task dynamics, and to a degree,  
one should see this effect for any team, regard-
less of experience or skill level. This finding is 
consistent with the thesis that teams instinc-
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tively attempt to match their coordination 
dynamics to task dynamics regardless of their 
skill level (Gorman, Amazeen, & Cooke, 
2010), which can be leveraged for training 
effective teams.

From a practical standpoint, task-dependent 
concomitancy means that if the objective of 
team training is the acquisition of both flexible 
neural and cognitive-behavioral processes, then 
more dynamic, scenario-based training rather 
than more retrospective, consensus-based training 
(e.g., debriefing) should be used. This finding 
conforms to the theory that flexible and adaptive 
team processes are induced by practicing in 
dynamic, unpredictable environments rather 
than by training on rote procedures or achieving 
consensus on shared knowledge (Gorman, 
Cooke, & Amazeen, 2010; Schollhorn et al., 
2006) but extends that theory across neural and 
cognitive-behavioral levels of analysis.

Mutual Discrimination
We defined mutual discrimination as the 

capability of both neural and communication 
variables to discriminate between more and less 
experienced teams. Although we found mutual 
discrimination, it was centered exclusively on 
differences that occurred during the dynamic 
scenario training segment. This result suggests 
that cross-level effects are also experience (and 
presumably skill) dependent and that those 
differences become most apparent during real-
time, dynamic task performance.

During the scenario (and overall), less experi-
enced teams had a more fixed neurophysiologi-
cal distribution (lower entropy) compared to 
more experienced teams (higher entropy), which 
indicates that more experienced teams were 
more neurally flexible. Scenario is the most 
dynamic training segment, where patterns of 
neural, cognitive, and behavioral activity must 
be flexible to adapt to changes in the task envi-
ronment. The finding that more experienced 
teams were more neurally flexible during this 
dynamic training segment is consistent with the 
thesis that although all teams attempt to adapt, 
more experienced, skilled teams are more 
responsive in adapting their coordination 
dynamics to keep pace with changing task 
dynamics (Gorman, Amazeen, et al., 2010;  

Stevens, Gorman, et al., 2012). Also during the 
scenario, more experienced teams’ communica-
tion was more similar to each other than to less 
experienced teams, which replicates prior 
research that discriminated between skilled and 
unskilled UAV teams (e.g., Gorman et al., 2003; 
Martin & Foltz, 2004). From a communication 
perspective, this finding further demonstrates 
that LSA is an effective diagnostic tool that gen-
erally discriminates more experienced from less 
experienced teams based on how they communi-
cate during task performance.

That mutual discrimination between more 
and less experienced teams was found only dur-
ing the scenario is consistent with the theory that 
team processes that account for differences in 
team effectiveness are most apparent during 
dynamic task performance. Specifically, this 
finding is aligned with interactive team cognition 
theory, which claims that team cognition is not 
contained separately in the heads of team mem-
bers but is directly embedded in their interactions 
during dynamic task performance (Cooke et al., 
2013; see also De Jaegher, 2009). Whereas the 
concomitancy result demonstrates that changes 
in training segment from planning (i.e., briefing) 
to task performance (i.e., scenario) to after-action 
review (i.e., debriefing) concomitantly modulate 
neural and cognitive-behavioral patterns, the 
mutual-discrimination finding suggests that the 
way teams respond to more dynamic, real-time 
tasks, such as the scenario training segment, is 
what really separates experienced from inexperi-
enced teams along neural and cognitive-behav-
ioral dimensions of teamwork.

Discriminating teams in terms of experience 
(or skill) level in the context of real-time, 
dynamic team interaction is a critical need in 
work domains such as emergency medicine 
(Shapiro et al., 2008) and cybersecurity (Raji-
van, Janssen, & Cooke, 2013). In such domains, 
there is a need to assess real-time team member 
interactions in order to not miss out on the team 
processes underlying team effectiveness (Wild-
man, Salas, & Scott, 2014). Communication 
content analysis is one approach for doing so, 
but it is resource-intensive and time-consuming 
and generally must be performed by communi-
cation analysis experts (Emmert & Barker, 
1989). Our mutual-discrimination results suggest 
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that neural and communications variables may 
provide interchangeable (or at least complemen-
tary) metrics for discriminating team skill level. 
Capitalizing on this characteristic of cross-level 
effects, eventually scenario-based training could 
utilize real-time neurophysiological observa-
tions as a process-based measure of team experi-
ence and skill level while reducing the need for 
extensive post hoc communication analysis. For 
example, automated neural metrics could be 
monitored by machines, and more in-depth com-
munication analysis could be performed by 
human experts whenever anomalies or other 
critical events are detected in the neural signals.

Cross-Correlations
To better determine how levels become 

linked in more and less experienced teams, we 
analyzed peak cross-correlations between neu-
rodynamic entropy and semantic content. Of the 
21 training segments that we analyzed across the 
more and less experienced teams, 19 exhibited 
significant peak cross-correlations (Figure 6). 
Of these significant peak cross-correlations, 
14 of 19 were negative (binomial p = .03), 
suggesting that in general, as teams become 
more neurally flexible (higher entropy), their 
utterances become terser and more efficiently 
packed with domain-specific content (smaller 
vector lengths). Shorter communication patterns 
and more efficient (“low-overhead”) communi-
cation are associated with behavioral flexibility 
in adaptive teams (Gorman, Cooke, Amazeen, 
& Fouse, 2012; MacMillan, Entin, & Serfaty, 
2004). Therefore, this result suggests that neural 
flexibility may be linked to cognitive-behavioral 
flexibility in adaptive teams.

Although there were significant peak cross-
correlations in all training segments, the sce-
nario segment resulted in the most compelling 
differences between more and less experienced 
teams. More experienced teams’ peak cross-
correlations were positively lagged, with change 
in communication pattern portending change  
in neurophysiological pattern, whereas less 
experienced teams’ peak cross-correlations 
were essentially zero lagged (i.e., neither level 
leading). Therefore, more experienced teams’ 
cross-level effects were temporally extended 
(extending into the future and past of team  

performance), whereas less experienced teams’ 
cross-level effects were temporally local (present 
only in the “here and now”). With greater expe-
rience, neural and cognitive-behavioral levels 
appear to become temporally intertwined with 
one another in more complex ways.

Temporally extended effects present a unique 
challenge for modeling human performance. As 
people establish a history working together as a 
team, team processes may become more and 
more embedded in the social history of the team 
over hours, days, and weeks, moving beyond 
timescales of deliberate human action (i.e., milli-
seconds to hours; see Newell, 1990, for times-
cales of deliberate human action). Accordingly, the 
level of explanation must also move beyond indi-
vidual-level cognitive constructs defined at the 
level of deliberate human action, such as mental 
models, scripts, and schemas (e.g., the individual-
level “inputs” in linear input→processing→output 
models; Ilgen, Hollenbeck, Johnson, & Jundt, 
2005) to capture temporally extended team  
processes.

A dynamical systems approach (Gorman, 
Amazeen, et al., 2010) may be more appropriate 
because the level of explanation focuses not on 
individual-level constructs defined at the level 
of deliberate human action but on emergent rela-
tions across all timescales of team interaction, 
including those extending over hours, days, and 
weeks. For example, we have successfully used 
dynamical systems approaches in the past to 
model temporally extended team effects sepa-
rately at the neural and communication levels 
using multifractal analysis (Likens et al., 2014) 
and attractor reconstruction (Gorman, Amazeen, 
et al., 2010). However, this type of modeling has 
yet to be applied to the phenomenon of cross-
level effects.

In this study, we explored potential causal 
directions between neural and communication 
variables by examining the lead-lag nature of 
peak cross-correlations. In contrast to the idea 
that team performance might follow a causal 
arrow from neural to cognitive-behavioral 
(neural→communications; Frith, 2007), our 
results indicate that changes in cognitive-behav-
ioral constraints (such as communication pat-
terns) tend to precede changes in neural patterns 
as teams gain experience (Fuchs & De Jaegher, 
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2009). We think that as teams gain history and 
experience, an interactive context of constraints 
emerges, compelling individual thoughts and 
actions to unfold in particular ways (Gorman, 
2014). Extending this idea to cross-level effects, 
once cognitive-behavioral constraints are estab-
lished, for example, through highly evolved 
communication patterns, they begin to structure 
neural patterns within and across team members. 
This effect is similar to the idea of the develop-
ment of individual knowledge through conver-
sation and dialog (e.g., common ground; Clark 
& Brennan, 1991; see also Bakhtin, 1986), but 
here communication patterns provide constraints 
under which individual neural patterns fluctuate 
and vary. A practical implication of this result is 
that by altering communication patterns and 
team interaction constraints during training, we 
may be able to drive changes at both the indi-
vidual and team neural levels.

Limitations and Future Directions
A methodological challenge in studying 

cross-level effects is the need to synchronize 
measurements across different levels of analysis. 
Although we measured team neurophysiology 
and communication using established methods, 
those methods do not naturally share a common 
sampling interval (i.e., communication content 
was measured utterance by utterance, whereas 
entropy was measured second by second). We 
aligned our data post hoc by computing mean 
entropy on an utterance-by-utterance basis (i.e., 
by downsampling entropy), which artificially 
reduced the amount of variability (information) 
in the entropy measurements. Authors of future 
research should address this issue by develop-
ing more directly matched sampling intervals 
between neural and communication measure-
ments to maximize the amount of overlapping 
information for testing cross-level effects.

In this study, we used amount of team experi-
ence as a surrogate for team skill level. How-
ever, more direct measures of team skill—rate of 
task performance, accuracy, and so on—are 
needed to further validate cross-level effects. In 
the future, using a synthetic task environment 
with built-in objective performance metrics 
(e.g., Cooke & Shope, 2005) to examine cross-
level effects could help address this issue.

In this study, amount of team experience 
included both the amount of submarine naviga-
tion experience (task familiarity) and the amount 
of experience working together as a team (team 
member familiarity). Therefore, we were unable 
to determine how each of these two team experi-
ence factors uniquely contributed to cross-level 
effects. In future research, it will be important to 
disentangle these factors in order to determine 
whether task familiarity or team member famil-
iarity contributes more to the development 
cross-level effects.

We examined neural and communication  
variables in SPAN teams, but cross-level effects 
could be investigated across other levels of  
analysis—such as physiological (e.g., respiratory 
effort), cognitive (e.g., mental models), and 
behavioral (e.g., kinematics)—in other work 
domains. For example, cross-level effects 
between cognition and kinematics could be 
important for understanding system performance 
in human–robot interaction (De Santis, Siciliano, 
De Luca, & Bicchi, 2007). Although our research 
with SPAN teams represents just one possibility, 
our results suggest that cross-level effects may be 
promising for understanding team skill develop-
ment in other work domains.

The strong emergence of cross-level effects 
during dynamic scenario performance highlights 
the importance of real-time team interaction  
for understanding the neural and cognitive-
behavioral underpinnings of team performance. 
However, we do not wish to discount the impor-
tant role of debriefing and after-action review in 
simulation-based learning. Learning requires 
feedback, and debriefing is a form of feedback 
that is used in a variety of military, industrial, 
and medical settings (Fanning & Gabba, 2007). 
That cross-level effects were less apparent dur-
ing debriefing suggests that cross-level effects 
may not be as diagnostic of learning during 
feedback phases of training but that they may be 
more useful for assessing team skill develop-
ment during dynamic scenario performances.

Do changes in communication patterns really 
cause changes in neural patterns? Although we 
observed that change in communication pattern 
portended change in neural pattern in more expe-
rienced teams, our results are correlational, and 
more research is needed to understand the causal 
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relationships underlying cross-level effects. Such 
an understanding could be gained by experimen-
tally inducing change on one level (e.g., neural) 
and then observing change on the other level 
(e.g., communication) (neural→communication) 
and vice versa (communication→neural), such 
that causal direction would serve as an indepen-
dent variable in the experiment. In this way, 
whether a “causal hierarchy” exists between lev-
els, where effects in one direction are stronger 
than effects in the other direction, could be deter-
mined. Resolving this issue is important for deter-
mining whether one level (e.g., communication) 
is more causal fundamentally than the other (e.g., 
neural) during team development and, therefore, 
should be the focus of team training and assess-
ment. Of course, if no causal hierarchy is found, 
then neural and cognitive-behavioral processes 
would develop in a reciprocal fashion, and team 
training and assessment should place equal 
emphasis on both levels of analysis.

Finally, this study revealed that cross-level 
effects are subject to variations in task dynamics, 
such as differences in training segments (e.g., sce-
nario vs. debriefing) and amount of team experi-
ence; however, to provide a more complete picture 
of cross-level effects, other variables relevant to 
team performance, such as shared-mental-model 
emergence (DeChurch & Mesmer-Magnus, 2010; 
Kozlowski & Klein, 2000) should be examined. 
For example, shared mental models are thought to 
reduce the need to communicate (Entin & Serfaty, 
1999; MacMillan et al., 2004). Therefore, given 
our current results, emergent shared mental mod-
els could moderate cross-level effects by reducing 
the amount of communication overhead, which 
should in turn affect neural flexibility.

Conclusion
Our results indicate that teamwork is not 

reducible to a fundamental level of analysis 
(e.g., neural or cognitive-behavioral) but that 
training effects are spread out across multiple 
levels and timescales of analysis and are mani-
fested in cross-level effects. Cross-level effects 
suggest that neural and cognitive-behavioral 
processes might be different faces of a uni-
tary coordination process rather than separable  
teamwork dimensions and that linkages between 

levels are established in temporally complex 
ways as teams gain experience.

In this light, cross-level effects suggest that 
different lines of team research that currently 
focus on a single level of analysis (e.g., neural 
processes, communication processes) might be 
focusing in on the same phenomenon, just using 
different methodological “lenses,” and that one 
key to an integrated picture may be expanding 
the analysis of team performance to incorporate 
team processes operating across different levels 
and timescales of analysis. Ultimately, under-
standing how cross-level effects develop as 
teams gain experience may lead to new forms of 
team skill assessment and new theories about 
what develops during team skill acquisition.
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Key Points
•• Concurrent changes across neural and communi-

cation levels of analysis, which we call cross-level 
effects, are subject to variations in team training 
and amount of team experience.

•• Neural and communication variables change 
together in response to changes in training seg-
ments (briefing, scenario, debriefing), and neural 
and communication variables mutually discrimi-
nate between teams with different experience  
levels.

•• Cross-level effects become more complex and 
temporally extended in more experienced teams, 
and we found evidence that changes in communi-
cation pattern portend changes in neural pattern in 
more experienced teams.

•• Cross-level effects could provide multiple routes 
for assessing team training effectiveness and 
help consolidate theories that currently focus on  
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different (e.g., neural, cognitive-behavioral) lev-
els of analysis.
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